Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 628(8008): 664-671, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38600377

RESUMEN

Bitter taste sensing is mediated by type 2 taste receptors (TAS2Rs (also known as T2Rs)), which represent a distinct class of G-protein-coupled receptors1. Among the 26 members of the TAS2Rs, TAS2R14 is highly expressed in extraoral tissues and mediates the responses to more than 100 structurally diverse tastants2-6, although the molecular mechanisms for recognizing diverse chemicals and initiating cellular signalling are still poorly understood. Here we report two cryo-electron microscopy structures for TAS2R14 complexed with Ggust (also known as gustducin) and Gi1. Both structures have an orthosteric binding pocket occupied by endogenous cholesterol as well as an intracellular allosteric site bound by the bitter tastant cmpd28.1, including a direct interaction with the α5 helix of Ggust and Gi1. Computational and biochemical studies validate both ligand interactions. Our functional analysis identified cholesterol as an orthosteric agonist and the bitter tastant cmpd28.1 as a positive allosteric modulator with direct agonist activity at TAS2R14. Moreover, the orthosteric pocket is connected to the allosteric site via an elongated cavity, which has a hydrophobic core rich in aromatic residues. Our findings provide insights into the ligand recognition of bitter taste receptors and suggest activities of TAS2R14 beyond bitter taste perception via intracellular allosteric tastants.


Asunto(s)
Colesterol , Espacio Intracelular , Receptores Acoplados a Proteínas G , Gusto , Humanos , Regulación Alostérica/efectos de los fármacos , Sitio Alostérico , Colesterol/química , Colesterol/metabolismo , Colesterol/farmacología , Microscopía por Crioelectrón , Interacciones Hidrofóbicas e Hidrofílicas , Espacio Intracelular/química , Espacio Intracelular/metabolismo , Ligandos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestructura , Reproducibilidad de los Resultados , Gusto/efectos de los fármacos , Gusto/fisiología , Transducina/química , Transducina/metabolismo , Transducina/ultraestructura
2.
Nat Chem ; 16(1): 142, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38182766
3.
bioRxiv ; 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37808655

RESUMEN

Psychedelic drugs like lysergic acid diethylamide (LSD) and psilocybin have emerged as potentially transformative therapeutics for many neuropsychiatric diseases, including depression, anxiety, post-traumatic stress disorder, migraine, and cluster headaches. LSD and psilocybin exert their psychedelic effects via activation of the 5-hydroxytryptamine 2A receptor (HTR2A). Here we provide a suite of engineered mice useful for clarifying the role of HTR2A and HTR2A-expressing neurons in psychedelic drug actions. We first generated Htr2a-EGFP-CT-IRES-CreERT2 mice (CT:C-terminus) to independently identify both HTR2A-EGFP-CT receptors and HTR2A-containing cells thereby providing a detailed anatomical map of HTR2A and identifying cell types that express HTR2A. We also generated a humanized Htr2a mouse line and an additional constitutive Htr2A-Cre mouse line. Psychedelics induced a variety of known behavioral changes in our mice validating their utility for behavioral studies. Finally, electrophysiology studies revealed that extracellular 5-HT elicited a HTR2A-mediated robust increase in firing of genetically-identified pyramidal neurons--consistent with a plasma membrane localization and mode of action. These mouse lines represent invaluable tools for elucidating the molecular, cellular, pharmacological, physiological, behavioral, and other actions of psychedelic drugs in vivo.

4.
Genome Res ; 31(4): 538-550, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33674350

RESUMEN

The AP-1 transcription factor (TF) dimer contributes to many biological processes and environmental responses. AP-1 can be composed of many interchangeable subunits. Unambiguously determining the binding locations of these subunits in the human genome is challenging because of variable antibody specificity and affinity. Here, we definitively establish the genome-wide binding patterns of five AP-1 subunits by using CRISPR to introduce a common antibody tag on each subunit. We find limited evidence for strong dimerization preferences between subunits at steady state and find that, under a stimulus, dimerization patterns reflect changes in the transcriptome. Further, our analysis suggests that canonical AP-1 motifs indiscriminately recruit all AP-1 subunits to genomic sites, which we term AP-1 hotspots. We find that AP-1 hotspots are predictive of cell type-specific gene expression and of genomic responses to glucocorticoid signaling (more so than super-enhancers) and are significantly enriched in disease-associated genetic variants. Together, these results support a model where promiscuous binding of many AP-1 subunits to the same genomic location play a key role in regulating cell type-specific gene expression and environmental responses.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Factor de Transcripción AP-1/metabolismo , Transcripción Genética , Elementos de Facilitación Genéticos/genética , Humanos , Transducción de Señal
5.
Nat Biotechnol ; 37(6): 657-666, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30988504

RESUMEN

CRISPR (clustered regularly interspaced short palindromic repeat) systems have been broadly adopted for basic science, biotechnology, and gene and cell therapy. In some cases, these bacterial nucleases have demonstrated off-target activity. This creates a potential hazard for therapeutic applications and could confound results in biological research. Therefore, improving the precision of these nucleases is of broad interest. Here we show that engineering a hairpin secondary structure onto the spacer region of single guide RNAs (hp-sgRNAs) can increase specificity by several orders of magnitude when combined with various CRISPR effectors. We first demonstrate that designed hp-sgRNAs can tune the activity of a transactivator based on Cas9 from Streptococcus pyogenes (SpCas9). We then show that hp-sgRNAs increase the specificity of gene editing using five different Cas9 or Cas12a variants. Our results demonstrate that RNA secondary structure is a fundamental parameter that can tune the activity of diverse CRISPR systems.


Asunto(s)
Biotecnología/tendencias , Sistemas CRISPR-Cas/genética , Edición Génica , ARN/genética , Conformación de Ácido Nucleico , ARN/química , ARN Guía de Kinetoplastida/genética , Streptococcus pyogenes/genética
6.
Genome Res ; 28(9): 1272-1284, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30097539

RESUMEN

Glucocorticoids are potent steroid hormones that regulate immunity and metabolism by activating the transcription factor (TF) activity of glucocorticoid receptor (GR). Previous models have proposed that DNA binding motifs and sites of chromatin accessibility predetermine GR binding and activity. However, there are vast excesses of both features relative to the number of GR binding sites. Thus, these features alone are unlikely to account for the specificity of GR binding and activity. To identify genomic and epigenetic contributions to GR binding specificity and the downstream changes resultant from GR binding, we performed hundreds of genome-wide measurements of TF binding, epigenetic state, and gene expression across a 12-h time course of glucocorticoid exposure. We found that glucocorticoid treatment induces GR to bind to nearly all pre-established enhancers within minutes. However, GR binds to only a small fraction of the set of accessible sites that lack enhancer marks. Once GR is bound to enhancers, a combination of enhancer motif composition and interactions between enhancers then determines the strength and persistence of GR binding, which consequently correlates with dramatic shifts in enhancer activation. Over the course of several hours, highly coordinated changes in TF binding and histone modification occupancy occur specifically within enhancers, and these changes correlate with changes in the expression of nearby genes. Following GR binding, changes in the binding of other TFs precede changes in chromatin accessibility, suggesting that other TFs are also sensitive to genomic features beyond that of accessibility.


Asunto(s)
Elementos de Facilitación Genéticos , Código de Histonas , Motivos de Nucleótidos , Receptores de Glucocorticoides/metabolismo , Activación Transcripcional , Línea Celular Tumoral , Epigénesis Genética , Humanos , Unión Proteica , Factores de Transcripción/metabolismo
9.
Nucleic Acids Res ; 43(18): 8924-41, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26384421

RESUMEN

CRISPR-associated endonuclease Cas9 cuts DNA at variable target sites designated by a Cas9-bound RNA molecule. Cas9's ability to be directed by single 'guide RNA' molecules to target nearly any sequence has been recently exploited for a number of emerging biological and medical applications. Therefore, understanding the nature of Cas9's off-target activity is of paramount importance for its practical use. Using atomic force microscopy (AFM), we directly resolve individual Cas9 and nuclease-inactive dCas9 proteins as they bind along engineered DNA substrates. High-resolution imaging allows us to determine their relative propensities to bind with different guide RNA variants to targeted or off-target sequences. Mapping the structural properties of Cas9 and dCas9 to their respective binding sites reveals a progressive conformational transformation at DNA sites with increasing sequence similarity to its target. With kinetic Monte Carlo (KMC) simulations, these results provide evidence of a 'conformational gating' mechanism driven by the interactions between the guide RNA and the 14th-17th nucleotide region of the targeted DNA, the stabilities of which we find correlate significantly with reported off-target cleavage rates. KMC simulations also reveal potential methodologies to engineer guide RNA sequences with improved specificity by considering the invasion of guide RNAs into targeted DNA duplex.


Asunto(s)
Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/metabolismo , División del ADN , ADN/metabolismo , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/metabolismo , Sitios de Unión , Humanos , Microscopía de Fuerza Atómica , Unión Proteica , ARN/química , ARN/metabolismo
10.
Genome Res ; 25(8): 1158-69, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26025803

RESUMEN

Genome engineering technologies based on the CRISPR/Cas9 and TALE systems are enabling new approaches in science and biotechnology. However, the specificity of these tools in complex genomes and the role of chromatin structure in determining DNA binding are not well understood. We analyzed the genome-wide effects of TALE- and CRISPR-based transcriptional activators in human cells using ChIP-seq to assess DNA-binding specificity and RNA-seq to measure the specificity of perturbing the transcriptome. Additionally, DNase-seq was used to assess genome-wide chromatin remodeling that occurs as a result of their action. Our results show that these transcription factors are highly specific in both DNA binding and gene regulation and are able to open targeted regions of closed chromatin independent of gene activation. Collectively, these results underscore the potential for these technologies to make precise changes to gene expression for gene and cell therapies or fundamental studies of gene function.


Asunto(s)
Sistemas CRISPR-Cas , Cromatina/química , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Factores de Transcripción/metabolismo , Sitios de Unión , Ensamble y Desensamble de Cromatina , ADN/química , Proteínas de Unión al ADN/química , Regulación de la Expresión Génica , Ingeniería Genética/métodos , Genoma Humano , Células HEK293 , Humanos , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN , Factores de Transcripción/química
11.
Nat Methods ; 10(10): 973-6, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23892895

RESUMEN

Technologies for engineering synthetic transcription factors have enabled many advances in medical and scientific research. In contrast to existing methods based on engineering of DNA-binding proteins, we created a Cas9-based transactivator that is targeted to DNA sequences by guide RNA molecules. Coexpression of this transactivator and combinations of guide RNAs in human cells induced specific expression of endogenous target genes, demonstrating a simple and versatile approach for RNA-guided gene activation.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Ingeniería de Proteínas/métodos , Edición de ARN , Factores de Transcripción/genética , Activación Transcripcional , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Proteína Antagonista del Receptor de Interleucina 1/genética , Ribonucleasas/genética , ARN Pequeño no Traducido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...